首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stability of metal ion complexes formed with methyl phosphate and hydrogen phosphate
Authors:A Saha  N Saha  L-n Ji  Jing Zhao  Fridrich Gregáň  S Ali A Sajadi  B Song  H Sigel
Institution:(1) Institute of Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland, CH;(2) Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia,
Abstract: The acidity constants of methyl phosphoric acid, CH3OPO(OH)2, and orthophosphoric acid, HOPO(OH)2, and the stability constants of the 1 : 1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ and methyl phosphate, CH3OPO3 2–, or hydrogen phosphate, HOPO3 2–, were determined by potentiometric pH titration in aqueous solution (25  °C;I = 0.1 M, NaNO3). On the basis of previously established log K versus pK a straight-line plots for the complexes of simple phosphate monoesters and phosphonate derivatives, R-PO3 2–, where R is a noncoordinating residue, it is shown that the stability of the M(CH3OPO3) complexes is solely determined (as one might expect) by the basicity of the –PO3 2– residue. It is emphasized that the mentioned reference lines may also be used to reveal increased complex stabilities, for example, for certain complexes formed with 8-quinolyl phosphate the occurrence of 7-membered chelates can be proven in this way; the same procedure is also applicable to complexes of nucleotides, etc. The M(HOPO3) complexes are slightly more stable (on average by 0.08 log unit) than it is expected from the basicity of HPO4 2–; this observation is attributed to a more effective solvation, including hydrogen bonding, than is possible with CH3OPO3 2– species. Received: 9 November 1995 / Accepted: 5 February 1996
Keywords:  Equilibrium constants  Hydrogen phosphate  Metal ion complexes  Methyl phosphate  Phosphate monoesters
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号