首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The synthesis of 3-nonaprenyl-4-hydroxybenzoate in rat liver mitochondria: the effect of Ca2 , Mg2+, chelators, and bacitracin on the activity of p-hydroxybenzoate-polyprenyl transferase
Authors:N Schechter  T Nishino  H Rudney
Institution:Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219 U.S.A.
Abstract:The formation of the first intermediate in ubiquinone-9 biosynthesis, 3-nonaprenyl-4-hydroxybenzoate (NPHB), by the enzyme p-hydroxybenzoate:polyprenyl transferase, has been studied in isolated rat liver mitochondria using solanesol pyrophosphate and p-hydroxybenzoate as the substrates. Phosphate buffer (100 mm) is inhibitory but at 20 mm inhibition is not apparent compared to other buffers at the same concentration. With various buffers at low concentration (20 mm) both EDTA and Mg2+ stimulate formation of NPHB while Ca2+ inhibits. Release of Ca2+ inhibition can be achieved by the addition of Mg2+, or EDTA, or EGTA, with EGTA being less effective than EDTA. When Mg2+, Ca2+, and EDTA are present together, a two- to threefold increase in activity of the enzyme is observed. The antibiotic bacitracin inhibits the synthesis of NPHB and the inhibition is increased when divalent cations are present. EGTA is more effective than EDTA in overcoming inhibition due to bacitracin. The possibility that these effects are partially due to alteration of mitochondrial membrane conformation as well as a direct effect on the enzyme is evaluated. The possible role of polyprenylphosphates in mitochondrial membrane function is discussed.
Keywords:The author to whom reprint requests should be directed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号