Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta |
| |
Authors: | Keshamouni Venkateshwar G Mattingly Raymond R Reddy Kaladhar B |
| |
Affiliation: | Department of Pathology, Wayne State University, Detroit, Michigan 48201, USA. |
| |
Abstract: | Activation of mitogen-activated protein kinase (Erk/MAPK) is a critical signal transduction event for estrogen (E(2))-mediated cell proliferation. Recent studies from our group and others have shown that persistent activation of Erk plays a major role in cell migration and tumor progression. The signaling mechanism(s) responsible for persistent Erk activation are not fully characterized, however. In this study, we have shown that E(2) induces a slow but persistent activation of Erk in MCF-7 breast carcinoma cells. The E(2)-induced Erk activation is dependent on new protein synthesis, suggesting that E(2)-induced growth factors play a major role in Erk activation. When MCF-7 cells were treated with E(2) in the presence of an anti-HER-2 monoclonal antibody (herceptin), 60-70% of E(2)-induced Erk activation is blocked. In addition, when untreated MCF-7 cells were exposed to conditioned medium from E(2)-treated cells, Erk activity was significantly enhanced. Furthermore Erk activity was blocked by an antibody against HER-2 or by heregulin (HRG) depletion from the conditioned medium through immunoprecipitation. In contrast, epidermal growth factor receptor (Ab528) antibody only blocked 10-20% of E(2)-induced Erk activation, suggesting that E(2)-induced Erk activation is predominantly mediated through the secretion of HRG and activation of HER-2 by an autoctine/paracrine mechanism. Inhibition of PKC-delta-mediated signaling by a dominant negative mutant or the relatively specific PKC-delta inhibitor rottlerin blocked most of the E(2)-induced Erk activation but had no effect on TGF alpha-induced Erk activation. By contrast inhibition of Ras, by inhibition of farnesyl transferase (Ftase-1) or dominant negative (N17)-Ras, significantly inhibited both E(2)- and TGF alpha-induced Erk activation. This evaluation of downstream signaling revealed that E(2)-induced Erk activation is mediated by a HRG/HER-2/PKC-delta/Ras pathway that could be crucial for E(2)-dependent growth-promoting effects in early stages of tumor progression. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|