Frequency modulation between low- and high-frequency components of the heart rate variability spectrum. |
| |
Authors: | Yuru Zhong Kung-Ming Jan Ki H Chon |
| |
Affiliation: | Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA. |
| |
Abstract: | Interactions among physiological mechanisms are abundant in biomedical signals, and they may exist to maintain efficient homeostasis. For example, sympathetic and parasympathetic neural activities interact to either elevate or depress the heart rate to maintain homeostasis. There has been considerable effort devoted to developing algorithms that can detect interactions between various physiological mechanisms. However, methods used to detect the presence of interactions between the sympathetic and parasympathetic nervous systems, to take one example, have had limited success. This may be because interactions in physiological systems are non-linear and non-stationary. The goal of this work was to identify non-linear interactions between the sympathetic and parasympathetic nervous systems in the form of frequency and amplitude modulations in human heart-rate data (n=6). To this end, wavelet analysis was performed, followed by frequency analysis of the resultant wavelet decomposed signals in several frequency brackets we define as: very low frequency (f<0.04 Hz), low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz). Our analysis suggests that the high-frequency bracket is modulated by the low-frequency bracket in the heart rate data obtained in both upright and sitting positions. However, there was no evidence of amplitude modulation among these frequencies. |
| |
Keywords: | |
|
|