首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva.
Authors:A Herbik  A Giritch  C Horstmann  R Becker  H J Balzer  H Bumlein  and U W Stephan
Institution:A Herbik, A Giritch, C Horstmann, R Becker, H J Balzer, H Bäumlein, and U W Stephan
Abstract:The nicotianamine-deficient mutant chloronerva resembles phenotypically an Fe-deficient plant despite the high accumulation of Fe in the leaves, whereas if suffers from Cu deficiency in the shoot. Two-dimensional electrophoretic separation of proteins from root tips and leaves of wild-type Lycopersicon esculentum Mill. cv Bonner Beste and the mutant grown with and without Fe showed a number of consistent differences. In root tips of the Fe-deficient wild type and the Fe-sufficient as well as the Fe-deficient mutant, the expression of glyceraldehyde-3-phosphate dehydrogenase, formate dehydrogenase, and ascorbate peroxidase was increased. In leaves of the Fe-sufficient and -deficient mutant, Cu-containing chloroplastic and cytosolic superoxide dismutase (Cu-Zn) and plastocyanin (Cu) were nearly absent. This low plastocyanin content could be restored by supplying Cu via the xylem, but the superoxide dismutase levels could not be increased by this treatment. The differences in the protein patterns between wild type and mutant indicate that the apparent Fe deficiency of mutant plants led to an increase in enzymes involved in anaerobic metabolism as well as enzymes involved in stress defense. The biosynthesis of plastocyanin was diminished in mutant leaves, but it was differentially induced by increased Cu content.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号