首页 | 本学科首页   官方微博 | 高级检索  
     


Cold-acclimation protects photosystem II against freezing damage in the halotolerant alga Dunaliella salina
Authors:Zchut Sigalit  Keren Nir  Ohad Itzhak  Pick Uri
Affiliation:Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Abstract:Cold-acclimation (CA) of the halotolerant alga Dunaliella was inhibited by light and by high salt. CA was associated with enhanced resistance to freezing in saline growth solutions, as manifested by protection of photosynthetic oxygen evolution and by reduced permeabilisation of the plasma membrane. Oxygen evolution activity in isolated chloroplasts was not affected by freezing, but was inhibited by high salt and the inhibition could be reversed or protected by glycerol. The activity of chloroplasts from cold-acclimated cells was more resistant to salt than of non-acclimated cells. Electron transport measurements in chloroplasts indicated that high salt inhibited PS-II, but not PS-I electron transport. High salt also inhibited PS-II thermoluminescence (TL) activity in chloroplasts. Similar inhibition of PS-II TL was observed by freezing intact cells in saline solutions. Chloroplasts from cold-acclimated cells had enhanced resistance to inhibition of PS-II electron transport and of PS-II TL by high salt. These results suggest that inhibition of oxygen evolution upon freezing Dunaliella cells may result from inactivation of PS-II due to massive influx of salt and loss of glycerol. The enhanced freeze-resistance of cold-acclimated cells to inhibition of oxygen evolution can be accounted for partly by protection of PS-II against high salt.
Keywords:cold-acclimation   Dunaliella   PS-II
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号