首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering Human T Cells for Resistance to Methotrexate and Mycophenolate Mofetil as an In Vivo Cell Selection Strategy
Authors:Mahesh Jonnalagadda  Christine E Brown  Wen-Chung Chang  Julie R Ostberg  Stephen J Forman  Michael C Jensen
Institution:1. Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America.; 2. Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America.; University of Minnesota, United States of America,
Abstract:Gene transfer and drug selection systems that enforce ongoing transgene expression in vitro and in vivo which are compatible with human pharmaceutical drugs are currently underdeveloped. Here, we report on the utility of incorporating human enzyme muteins that confer resistance to the lymphotoxic/immunosuppressive drugs methotrexate (MTX) and mycophenolate mofetil (MMF) in a multicistronic lentiviral vector for in vivo T lymphocyte selection. We found that co-expression of human dihydrofolate reductase (DHFRFS; L22F, F31S) and inosine monophosphate dehydrogenase II (IMPDH2IY; T333I, S351Y) conferred T cell resistance to the cytocidal and anti-proliferative effects of these drugs at concentrations that can be achieved clinically (up to 0.1 µM MTX and 1.0 µM MPA). Furthermore, using a immunodeficient mouse model that supports the engraftment of central memory derived human T cells, in vivo selection studies demonstrate that huEGFRt+DHFRFS+IMPDH2IY+ T cells could be enriched following adoptive transfer either by systemic administration of MTX alone (4.4 -fold), MMF alone (2.9-fold), or combined MTX and MMF (4.9-fold). These findings demonstrate the utility of both DHFRFS/MTX and IMPDH2IY/MMF for in vivo selection of lentivirally transduced human T cells. Vectors incorporating these muteins in combination with other therapeutic transgenes may facilitate the selective engraftment of therapeutically active cells in recipients.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号