首页 | 本学科首页   官方微博 | 高级检索  
     


Molecularly Distinct Routes of Mitochondrial Ca2+ Uptake Are Activated Depending on the Activity of the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA)
Authors:Markus Waldeck-Weiermair  András T. Deak  Lukas N. Groschner  Muhammad Rizwan Alam  Claire Jean-Quartier  Roland Malli  Wolfgang F. Graier
Affiliation:From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
Abstract:The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.
Keywords:Calcium ATPase   Calcium Intracellular Release   Calcium Signaling   Calcium Transport   Mitochondria
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号