首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of a Dynamic Interaction between Two Microtubule-binding Proteins,EB1 and TIP150, by the Mitotic p300/CBP-associated Factor (PCAF) Orchestrates Kinetochore Microtubule Plasticity and Chromosome Stability during Mitosis
Authors:Tarsha Ward  Ming Wang  Xing Liu  Zhikai Wang  Peng Xia  Youjun Chu  Xiwei Wang  Lifang Liu  Kai Jiang  Huijuan Yu  Maomao Yan  Jianyu Wang  Donald L Hill  Yuejia Huang  Tongge Zhu  Xuebiao Yao
Institution:From the Anhui-MSM Joint Research Group for Cellular Dynamics, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, and University of Science and Technology of China, Hefei, Anhui 230026, China.;the §Department of Physiology and Molecular Imaging Core, Morehouse School of Medicine, Atlanta, Georgia 30310, and ;the Airforce General Hospital, Beijing 100036, China
Abstract:The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.
Keywords:Acetyl Coenzyme A  Cell Cycle  Genomic Instability  Mitosis  Mitotic Spindle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号