首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data
Authors:Almond  A; Brass  A; Sheehan  JK
Institution:Division of Biochemistry, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK.
Abstract:Studies of the hyaluronan (HA) tetrasaccharides are important for understanding hydrogen-bonding in the HA polymer, as they are probably the smallest oligomers in which characteristics of the constituent monosaccharides and the polymer are simultaneously exhibited. Here we present extensive molecular dynamics simulations of the two tetrasaccharides of HA in dilute aqueous solution. These simulations have confirmed the existence of intramolecular hydrogen-bonds between the neighboring sugar residues of HA in solution, as proposed by Scott (1989). However, our simulations predict that these intramolecular hydrogen-bonds are not static as previously proposed, but are in constant dynamic exchange on the sub-nanosecond time-scale. This process results in discrete internal motion of the HA tetrasaccharides where they rapidly move between low energy conformations. Specific interactions between water and intramolecular hydrogen-bonds involving the hydroxymethyl group were found to result in differing conformations and dynamics for the two alternative tetrasaccharides of HA. This new observation suggests that this residue may play a key role in the entropy and stability of HA in solution, allowing it to stay soluble up to high concentration. The vicinal coupling constants3 J NHCH of the acetamido groups have been calculated from our aqueous simulations of HA. We found that high values of 3J NHCH approximately 8 Hz, as experimentally measured for HA, are consistent with mixtures of both trans and cis conformations, and thus3 J NHCH cannot be used to imply a purely trans conformation of the acetamido. The rapid exchange of intramolecular hydrogen-bonds indicates that although the structure is at any moment stabilized by these hydrogen-bonds, no one hydrogen-bond exists for an extended period of time. This could explain why NMR often fails to provide evidence for intramolecular hydrogen-bonds in HA and other aqueous carbohydrate structures.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号