首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of acetazolamide on cytokines in rats exposed to high altitude
Institution:1. Department of Emergency Medicine, Faculty of Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey;2. Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey;3. Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey
Abstract:Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500 m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude + ACZ (22.33 mg/kg, Bid) (HA + ACZ) group. The rats were acute exposed to high altitude at 4300 m for 3 days. The HA + ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA + ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body’s physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA + ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other reason to explain ACZ against the acute mountain sickness.
Keywords:Cytokine  High altitude  Hypoxia  Acetazolamide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号