Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells |
| |
Affiliation: | 1. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;2. Department of Surgery, Taipei Medical University Shuang Ho Hospital, Taipei 235, Taiwan;3. Department of Pathology, Taipei Medical University Shuang Ho Hospital, Taipei 235, Taiwan;4. College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;5. Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei 110, Taiwan;6. Biostatistics and Research Consultation Center, Taipei Medical University, Taipei 110, Taiwan;7. Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, Taipei 235, Taiwan;8. Department of Medical Research and Education, Taipei Medical University Shuang Ho Hospital, Taipei 235, Taiwan;1. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan;2. Department of Neurosurgery, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam;3. Department of Neurosurgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan;4. Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan;5. Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan;6. Biostatistics and Research Consultation Center, Taipei Medical University, Taipei, Taiwan;7. Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan;8. Division of Thoracic Surgery, Department of Surgery, Taipei Medical University- Shuang Ho Hospital, Taipei, Taiwan |
| |
Abstract: | Pterostilbene (PT), an analog of resveratrol, exerts a potent anti-inflammatory effect. However, the protective effects of PT against inflammation in endothelial cells have not been elucidated. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of endothelial cell inflammation. In this study, we explored the effect of PT on the tumor necrosis factor-α (TNF-α)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs) and elaborated the role of ERS in this process. TNF-α treatment significantly upregulated the levels of inflammation-related molecules in cell culture media, increased the adhesion of monocytes to HUVECs, and enhanced the expression of the MMP9 and ICAM proteins in HUVECs. Additionally, TNF-α potently increased ERS-related protein levels, such as GRP78 and p-eIF2α. However, PT treatment reversed the increased production of inflammatory cytokines and the adhesion of monocytes to HUVECs, as well as reduced the TNF-α-induced effects exerted by ERS-related molecules. Furthermore, thapsigargin (THA), an ERS inducer, attenuated the protective effect of PT against TNF-α-induced inflammation and ERS in HUVECs. Additionally, the downregulation of ERS signaling using siRNA targeting eIF2α and IRE1 not only inhibited ERS-related molecules but also simulated the therapeutic effects of PT on TNF-α-induced inflammation. In summary, PT treatment potently attenuates inflammation in vascular endothelial cells, which at least partly depends on the reduction of ERS. |
| |
Keywords: | Pterostilbene Endoplasmic reticulum stress Anti-inflammatory Endothelial cells |
本文献已被 ScienceDirect 等数据库收录! |
|