首页 | 本学科首页   官方微博 | 高级检索  
     


Brief rapid pacing depresses contractile function via Ca(2+)/PKC-dependent signaling in cat ventricular myocytes
Authors:Wang Y G  Benedict W J  Hüser J  Samarel A M  Blatter L A  Lipsius S L
Affiliation:Department of Physiology, Stritch School of Medicine, Loyola University Chicago and Cardiovascular Institute, Maywood, Illinois 60153, USA.
Abstract:The purpose of this study is to determine the effects of brief rapid pacing (RP; approximately 200-240 beats/min for approximately 5 min) on contractile function in ventricular myocytes. RP was followed by a sustained inhibition of peak systolic cell shortening (-44 +/- 4%) that was not due to changes in diastolic cell length, membrane voltage, or L-type Ca(2+) current (I(Ca,L)). During RP, baseline and peak intracellular Ca(2+) concentration ([Ca(2+)](i)) increased markedly. After RP, Ca(2+) transients were similar to control. The effects of RP on cell shortening were not prevented by 1 microM calpain inhibitor I, 25 microM L-N(5)-(1-iminoethyl)-orthinthine, or 100 microM N(G)-monomethyl-L-arginine. However, RP-induced inhibition of cell shortening was prevented by lowering extracellular [Ca(2+)] (0.5 mM) during RP or exposure to chelerythrine (2-4 microM), a protein kinase C (PKC) inhibitor, or LY379196 (30 nM), a selective inhibitor of PKC-beta. Exposure to phorbol ester (200 nM phorbol 12-myristate 13-acetate) inhibited cell shortening (-46 +/- 7%). Western blots indicated that cat myocytes express PKC-alpha, -delta, and -epsilon as well as PKC-beta. These findings suggest that brief RP of ventricular myocytes depresses contractility at the myofilament level via Ca(2+)/PKC-dependent signaling. These findings may provide insight into the mechanisms of contractile dysfunction that follow paroxysmal tachyarrhythmias.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号