首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ventilation-perfusion inhomogeneity increases gas uptake: theoretical modeling of gas exchange.
Authors:P J Peyton  G J Robinson  B Thompson
Institution:Department of Anaesthesia, Austin and Repatriation Medical Centre, Heidelberg 3084, Australia. phil@austin.unimelb.edu.au
Abstract:Ventilation-perfusion (VA/Q) inhomogeneity was modeled to measure its effect on gas exchange in the presence of inspired mixtures of two soluble gases using a two-compartment computer model. Theoretical studies involving a mixture of hypothetical gases with equal solubility in blood showed that the effect of increasing inhomogeneity of distributions of either ventilation or blood flow is to paradoxically increase uptake of the gas with the lowest overall uptake in relation to its inspired concentration. This phenomenon is explained by the concentrating effects that uptake of soluble gases exert on each other in low VA/Q compartments. Repeating this analysis for inspired mixtures of 30% O(2) and 70% nitrous oxide (N(2)O) confirmed that, during "steady-state" N(2)O anesthesia, uptake of N(2)O is predicted to paradoxically increase in the presence of worsening VA/Q inhomogeneity.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号