首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ion transport across the skin of a larval salamander
Institution:1. Steel Institute, RWTH Aachen University, Intzestraße 1, 52072 Aachen, Germany;2. Metal Forming Group, Global R&D Centre, POSCO, South Korea;3. Stainless Steel Products Research Group, POSCO, South Korea
Abstract:The transport characteristics of the skin of neotenic Ambystoma tigrinum were investigated using ion substitution and circuit analysis. When bathed with sodium Ringer solution on both sides, a transepithelial potential of up to 50 mV (inside positive) and a short-circuit current (Isc) of up to 10 μA/cm2 were observed. When amiloride was added or Na+ was replaced by tetramethylammonium in the apical solution, Isc was decreased from 3.7 ± 0.4 to 1.5 ± 0.2 μA/cm2 (n = 10). When K+ replaced Na+, there was a smaller change in Isc from 5.8 ± 0.6 to 3.7 ± 0.5 μA/cm2 (n = 10). Although barium had no effect when added to 100 K Ringer on normal skin, it inhibited Isc on skins taken from K+-loaded animals. Nystatin caused substantial increases in Isc with either Na+ or K+ as the dominant cation in the apical solution. Current voltage analysis using amiloride was used to estimate the resistances and electromotive forces (EMF) associated with ion transport. The EMF for ion transport was partially dependent on K+ in the basolateral solution and it was similar to that observed in other epithelia. The resistance of the transport pathway was high, consistent with the low Isc. These results suggest that there is an amiloride-sensitive Na+ channel in parallel with a small K+ conductance in the apical membrane of this preparation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号