首页 | 本学科首页   官方微博 | 高级检索  
     


Selective degradation of oxidatively modified protein substrates by the proteasome
Authors:Grune Tilman  Merker Katrin  Sandig Grit  Davies Kelvin J A
Affiliation:Neuroscience Research Center, Medical Faculty (Charité) Humboldt University Berlin, Schumannstr. 20/21, 10117 Berlin, Germany.
Abstract:Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.
Keywords:Protein oxidation   Proteolysis   Proteasome   Lysosomes   Calpains   Free radicals
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号