首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fluorine-19 nuclear magnetic resonance investigation of fluorine-19-labeled phospholipids. 1. A multiple-pulse study
Authors:J F Post  B W Cook  S R Dowd  I J Lowe  C Ho
Abstract:A multiple-pulse nuclear magnetic resonance technique has been used to measure the order parameter, SFF, at 40 MHz for dimyristoylphosphatidylcholine labeled with a difluoromethylene group at the 4-, 8-, or 12-position of the sn-2-acyl chain dispersed in water in the liquid-crystalline phase. The Carr-Purcell-Meiboom-Gill multiple-pulse sequence can resolve the homonuclear dipolar coupling between the two fluorine nuclei, thus making a direct determination of the order parameter, SFF, for the F-F internuclear vector possible. Other interactions, such as the 19F chemical shift anisotropy, heteronuclear dipolar couplings, and field inhomogeneity, which normally obscure the dipolar splitting, are effectively canceled. The order parameters obtained in this work compare well with those obtained by 19F nuclear magnetic resonance line-shape analysis of the 19F-labeled phospholipids reported in the following paper Dowd, S. R., Simplaceanu, V., & Ho, C. (1984) Biochemistry (following paper in this issue)] as well as comparable SCD order parameters, determined for the deuterium-carbon internuclear vector of deuterium-labeled phospholipids Oldfield, E., Meadows, M., Rice, D., & Jacobs, R. (1978) Biochemistry 17, 2727-2740]. The present results clearly show the usefulness of using nuclear magnetic resonance spectroscopy to investigate lipid-lipid and protein-lipid interactions, especially for those systems containing a difluoromethylene group in the acyl chain of a phospholipid molecule.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号