首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes
Authors:M Özgen  M Türet  S Altınok  C Sancak
Institution:(1) Department of Field Crops, Faculty of Agriculture, University of Ankara, 06110 Diskapi, Ankara, Turkey, TR;(2) Department of Molecular Biology and Genetics, Faculty of Science and Art, Bogazici University, 80815 Bebek, Istanbul, Turkey, TR
Abstract:Immature and mature embryos of 12 common winter wheat (Triticum aestivum) genotypes were cultured in vitro to develop an efficient method of callus formation and plant regeneration from mature embryo culture, and to compare the responses of both embryo cultures. Fifteen days after anthesis, immature embryos were aseptically dissected from seeds and placed with the scutellum upwards on a solid agar medium containing the inorganic components of Murashige and Skoog (MS) and 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). Mature embryos were moved slightly in the imbibed seeds. The seeds with moved embryos were placed furrow downwards in dishes containing 8 mg/l 2,4-D for callus induction. The developed calli and regenerated plants were maintained on 2,4-D-free MS medium. Plants regenerated from both embryo cultures were vernalized and grown to maturity in soil. Regenerated plantlets all maintained the hexaploid chromosome number. A strong genotypic effect on the culture responses was found for both explant cultures. Callus induction rate, regeneration capacity of callus and number of plants regenerated were independent of each other. Mature embryos had a high frequency of callus induction and regeneration capacity, and therefore, being available throughout the year, can be used as an effective explant source in wheat tissue culture. Received: 4 February 1997 / Revision received: 1 April 1997 / Accepted: 5 May 1997
Keywords:Triticum aestivum  Tissue culture  Embryo culture  Callus induction  Plant regeneration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号