首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The two substrate-water molecules are already bound to the oxygen-evolving complex in the S2 state of photosystem II
Authors:Hendry Garth  Wydrzynski Tom
Institution:Photobioenergetics, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia.
Abstract:The first direct evidence which shows that both substrate-water molecules are bound to the O(2)-evolving catalytic site in the S(2) state of photosystem II (PSII) is presented. Rapid (18)O isotope exchange measurements between H(2)(18)O incubated in the S(2) state of PSII-enriched membrane samples and the photogenerated O(2) reveal a fast and a slow phase of exchange at m/e 34 (which measures the level of the (16)O(18)O product). The rate constant for the slow phase of exchange ((34)k(1)) equals 1.9 +/- 0.3 s(-1) at 10 degrees C, while the fast phase of exchange is unresolved by our current experimental setup ((34)k(2) >or= 175 s(-1)). The unresolvable fast phase has left open the possibility that the second substrate-water molecule binds to the catalytic site only after the formation of the S(3) state Hillier, W., and Wydrzynski, T. (2000) Biochemistry 39, 4399-4405]. However, for PSII samples depleted of the 17 and 23 kDa extrinsic proteins (Ex-depleted PSII), two completely resolvable phases of (18)O exchange are observed in the S(2) state of the residual activity, with the following rate constants: (34)k(1) = 2.6 +/- 0.3 s(-1) and (34)k(2) = 120 +/- 14 s(-1) at 10 degrees C. Upon addition of 15 mM CaCl(2) to Ex-depleted PSII, the O(2) evolution activity increases to approximately 80% of the control level, while the two resolvable phases of exchange remain the same. In measurements of Ex-depleted PSII at m/e 36 (which measures the level of the (18)O(18)O product), only a single phase of exchange is observed in the S(2) state, with a rate constant ((36)k(1) = 2.5 +/- 0.2 s(-1)) that is identical to the slow rate of exchange in the m/e 34 data. Taken together, these results show that the fast phase of (18)O exchange is specifically slowed by the removal of the 17 and 23 kDa extrinsic proteins and that the two substrate-water molecules must be bound to independent sites already in the S(2) state. In contrast, the (18)O exchange behavior in the S(1) state of Ex-depleted PSII is no different from what is observed for the control, with or without the addition of CaCl(2). Since the fast phase of exchange in the S(1) state is unresolved (i.e., (34)k(2) > 100 s(-1)), the possibility remains that the second substrate-water molecule binds to the catalytic site only after the formation of the S(2) state. The role of the 17 and 23 kDa extrinsic proteins in establishing an asymmetric dielectric environment around the substrate binding sites is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号