首页 | 本学科首页   官方微博 | 高级检索  
   检索      


3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. Differential susceptibility to two bacterial toxins
Authors:T Murayama  M Ui
Abstract:When rat adipocyte membranes had been labeled with 3H]GTP in the presence of a beta-adrenergic agonist, the subsequent 3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号