首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intracellular pH-based controlled cultivation of yeast cells: II. cultivation methodology
Authors:Sureshkumar G K  Mutharasan R
Institution:Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104.
Abstract:Intracellular pH (pH(i)) was measured on-line in a bioreactor using a fluorescent pH(i) indicator, 9-aminoacridine, and controlled fed-batch cultivations of yeast cells based on pH(i) (FB-pH(i)) were performed. In FB-pH(i) cultivations, automated glucose additions were made to the culture in response to culture pH(i). The average ethanol (an-aerobic product) yield was significantly lower 0.12 g g(-1) glucose in fed-batch pH(i) cultivations with 100 ppm glucose additions (FB-pH(i)-100 cultivation) vs. 0.48 g g(-1) glucose in batch] and cell yield was higher (0.54 g g(-1) glucose in FB-pH(i)-100 cultivation vs. 0.3 g g(-1) glucose in batch) compared to batch cultivation. An expression has been derived to calculate changes in pH(i) from measured fluorescence values when the cell concentration increases during growth. Cultivations based on pH(i), performed with different magnitudes of glucose addition (100, 50, and 10 ppm additions), showed that lower magnitudes of glucose addition resulted in lower ethanol yields while cell yield remained unaffected. The ratio of specific oxygen uptake rate to specific glucose uptake rate (OUR/GUR) increased with decreased in magnitude of glucose additions in FB-pH(i) cultivations, suggesting that the culture aerobic state was higher when the magnitude of glucose addition was lower. The average cell productivity in FB-pH(i) cultivations was 29% higher than in batch cultivation. Cells were also cultivated at high OUR conditions, and the results are compared with other cultivations. (c) 1993 John Wiley & Sons, Inc.
Keywords:intracellular pH  bioreactors  cultivation  yeast  9-aminoacridine
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号