首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Systems and synthetic biology approaches in understanding biological oscillators
Authors:Zhengda Li  Qiong Yang
Institution:1. Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA2. Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
Abstract:Background: Self-sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single-cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators. Results: Approaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest, de novo oscillators in both live cells and cell-free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations. Conclusion: With the recent development of biological and computational tools, both approaches have made significant achievements.
Keywords:biological oscillators  synthetic oscillators  circuit design principles  
点击此处可从《Quantitative Biology.》浏览原始摘要信息
点击此处可从《Quantitative Biology.》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号