首页 | 本学科首页   官方微博 | 高级检索  
     


Integration of Biochemical and Biomechanical Signals Regulating Endothelial Barrier Function
Authors:Virginia Aragon Sanabria  Cheng Dong
Affiliation: Department of Biomedical Engineering, the Pennsylvania State University, University Park, 16802.
Abstract:Endothelial barrier function is critical for tissue homeostasis throughout the body. Disruption of the endothelial monolayer leads to edema, vascular diseases and even cancer metastasis among other pathological conditions. Breakdown of the endothelial barrier integrity triggered by cytokines (e.g.IL-8,IL-1β) and growth factors (e.g.VEGF) is well documented. However, endothelial cells are subject to major biomechanical forces that affect their behavior. Due to their unique location at the interface between circulating blood and surrounding tissues, endothelial cells experience shear stress, strain and contraction forces. More than three decades ago, it was already appreciated that shear flow caused endothelial cells alignment in the direction of the flow. After that observation, it took around 20 years to begin to uncover some of the mechanisms used by the cells for mechanotransduction. In this review, we describe mechanosensors on the endothelium identified to date and the associated signaling pathways that integrate biochemical and biomechanical inputs into biological responses and how they modulate the integrity of the endothelial barrier.
Keywords:Endothelial barrier   gap formation   shear flow   mechanotransduction   cytokines   growth factors.
点击此处可从《Molecular & cellular biomechanics : MCB》浏览原始摘要信息
点击此处可从《Molecular & cellular biomechanics : MCB》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号