首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase
Authors:Maruyama Yukie  Chuma Asako  Mikami Bunzo  Hashimoto Wataru  Murata Kousaku
Institution:
  • 1 Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
  • 2 Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
  • Abstract:Three subfamilies of metallopeptidase family M16 enzymes—M16A, M16B, and M16C—are widely distributed among eukaryotes and prokaryotes. SPH2681, a periplasmic M16B protein found in Sphingomonas sp. strain A1, contains an HXXEH motif essential for Zn2+ binding and catalytic activity. SPH2682 is another member of M16B, which lacks the metal-binding motif but conserves an active-site R/Y pair commonly found in the C-terminal half of M16 enzymes. Two genes coding for SPH2681 and SPH2682 assemble into a single operon in the bacterial genome. This study determined SPH2681 to be constitutively expressed in strain A1 cells grown on different carbon sources, suggesting a more general cellular function. SPH2681 and SPH2681/SPH2682 were overexpressed in Escherichia coli, purified, and characterized. SPH2681 was found to associate with SPH2682, forming a heterosubunit enzyme with peptidase activity, while SPH2681 alone exhibited no enzymatic activity. X-ray crystallography of the SPH2681/SPH2682 complex revealed two conformations (open and closed heterodimeric forms) within the same crystal. Compared with the closed form, the open form contains two subunits rotated away from each other by approximately 8°, increasing the distance between the zinc ion and active-site residues by up to 8 Å. In addition, many hydrogen bonds are formed or broken on change between the conformations of the heterodimers, suggesting that subunit dynamics is a prerequisite for catalysis. To our knowledge, this is the first report on both conformational forms of the same M16 peptidase, providing a unique insight into the general proteolytic mechanism of M16 proteases.
    Keywords:Sphingomonas  zinc peptidase  heterodimer  X-ray crystallography  conformational change
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号