首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A crystallographic study of the role of sequence context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on the exonuclease complex
Authors:Aller Pierre  Duclos Stéphanie  Wallace Susan S  Doublié Sylvie
Institution:
  • Department of Microbiology and Molecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
  • Abstract:Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5′-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5′-G, which can no longer serve as a template for primer elongation Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. & Doublié S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.].Several studies showed that in the sequence context 5′-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5′-A-Tg-G, 5′-T-Tg-G, and 5′-C-Tg-G. A combination of several factors—including the associated exonuclease activity, the nature of the 3′ and 5′ bases surrounding Tg, and the cis-trans interconversion of Tg—influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.
    Keywords:Tg  thymine glycol  5&prime  -T-Tg-G-ter  5&prime  -T-Tg-G ternary complex  AcyATP  acyclic ATP  PDB  Protein Data Bank  5&prime  -T-Tg-G-bin  5&prime  -T-Tg-G binary complex  PEG  polyethylene glycol
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号