首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EPR characterization of the iron-sulfur-containing NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain
Authors:S W Meinhardt  K Matsushita  H R Kaback  T Ohnishi
Institution:Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104.
Abstract:The energy coupled NADH-ubiquinone (Q) oxidoreductase segment of the respiratory chain of Escherichia coli GR19N has been studied by EPR spectroscopy. Previously Matsushita et al. (1987) Biochemistry 26, 7732-7737] have demonstrated the presence of two distinct NADH-Q oxidoreductases in E. coli membrane particles and designated them NADH dh I and NADH dh II. Although both enzymes oxidize NADH, only NADH dh I is coupled to the formation of the H+ electrochemical gradient. In addition to NADH, NADH dh I oxidizes nicotinamide hypoxanthine dinucleotide (deamino-NADH), while NADH dh II does not. In membrane particles we have detected EPR signals arising from four low-potential iron-sulfur clusters, one binuclear, one tetranuclear, and two fast spin relaxing g perpendicular = 1.94 type clusters (whose cluster structure has not yet been assigned). The binuclear cluster, temporarily designated N-1]E, shows an EPR spectrum with gx,y,z = 1.92, 1.935, 2.03 and the Em7.4 value of -220 mV (n = 1). The tetranuclear cluster, N-2]E, elicits a spectrum with gx,y,z = 1.90, 1.91, 2.05 and an Em7.4 of -240 mV (n = 1). These two clusters have been shown to be part of the NADH dh I complex by stability and inhibitor studies. When stored at 4 degrees C, both clusters are extremely labile as is the deamino-NADH-Q oxidoreductase activity. Addition of deamino-NADH in the presence of piericidin A results in nearly full reduction of N-2]E within 17 s. In membrane particles pretreated with piericidin A, the cluster N-1]E is only partly reducible by deamino-NADH and shows an altered line shape.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号