首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell-substratum adhesion in embryonic chick central nervous system is mediated by a 170,000-mol-wt neural-specific polypeptide
Authors:G J Cole  L Glaser
Abstract:Embryonal chick neural retina cells release into the culture medium a complex of proteins and glycosaminoglycans, termed adherons, that promote cell to substratum adhesion. A monoclonal antibody (C1H3) blocks adheron-mediated cell to substratum adhesion and specifically binds to a 170,000-mol-wt protein present in retinal adherons (Cole, G.J., and L. Glaser, 1984, J. Biol. Chem., 259:4031-4034). The 170,000-mol-wt protein also can be identified in embryonic chick brain and peripheral nervous tissue. In the neural retina, C1H3 also binds to a second antigen with a molecular weight of 140,000 that is absent in the brain. Embryonic brain, therefore, provides a source for the immunopurification of the 170,000-mol-wt protein. Brain adherons also contain the 170,000-mol-wt protein, and cell to substratum adhesion mediated by these adherons is blocked by the C1H3 monoclonal antibody. The 170,000-mol-wt protein in the brain is therefore functionally identical to that in the retina. To demonstrate that adheron-mediated cell to substratum adhesion is caused by cell binding to the 170,000-mol-wt protein, we showed that (a) protease digestion, but not glycosaminoglycan hydrolase digestion of adherons, blocked their ability to bind cells to substratum; (b) the immunopurified 170,000-mol-wt protein blocks adheron-mediated cell to substratum adhesion; and (c) cells can bind to immunopurified 170,000-mol-wt protein bound to glass surfaces.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号