首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Movement to bark and metabolism of xylem cytokinins in stems of Lupinus angustifolius
Authors:Zhang Ren  Letham David S  Willcocks David A
Institution:Research School of Biological Sciences, The Australian National, University, PO Box 475, ACT 2601, Canberra, Australia.
Abstract:Following uptake of (3)H]zeatin riboside and (3)H]dihydrozeatin riboside by girdled lupin (Lupinus angustifolius L.) stems via the transpiration stream, rapid lateral movement of the radioactivity from xylem to bark was observed. Short-term studies with intact stems, and other studies with excised stem tissues, revealed that the ribosides and/or the corresponding nucleotides were the cytokinin forms which actually moved into the bark tissues. Relative to cytokinin metabolism in xylem plus pith, metabolism in bark was both more rapid and more complex. Riboside cleavage and formation of the O-acetylzeatin and O-acetyldihydrozeatin ribosides and nucleotides were almost completely confined to bark tissues. Exogenous (3)H-labelled O-acetylzeatin riboside was converted to zeatin riboside in bark tissue, but the presence of the acetyl group suppressed degradation to adenine metabolites. The sequestration and modification of xylem cytokinins by stem tissues probably contributes significantly to the cytokinin status of the shoot. New cytokinins identified by mass spectrometry in lupin were: O-acetyldihydrozeatin 9-riboside, a metabolite of exogenous dihydrozeatin riboside in stem bark; O-methylzeatin nucleotide and O-methyldihydrozeatin 9-riboside, metabolites of endogenous cytokinins in stem bark; O-methylzeatin nucleotide and O-methylzeatin 9-riboside, metabolites of exogenous zeatin riboside in excised pod walls.
Keywords:Lupinus angustifolius L    Leguminosae  Cytokinin translocation and metabolism  Stem tissues
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号