首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Maintained depolarization of synaptic terminals facilitates nerve-evoked transmitter release at a crayfish neuromuscular junction
Authors:J M Wojtowicz  H L Atwood
Abstract:Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号