首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing
Authors:Yun  Jianmin  Zhao  Fengqin  Zhang  Wenwei  Yan  Haijiao  Zhao  Fengyun  Ai  Duiyuan
Institution:1.College of Food Science and Engineering, Gansu Agricultural University, No.1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu, China
;
Abstract:

This study reveals the microbial community succession and diversity during the whole solid-fermentation processes of naturally fermented Liangzhou fumigated vinegar (LZFV). Dynamics and diversity of microbial community succession in “Daqu” starter and other fermentation stages (starch saccharification, alcoholic fermentation, and acetic acid fermentation) were monitored using a metagenomic approach involving high-throughput sequencing. Meanwhile, dynamic changes of characteristic flavor compounds of vinegar were determined by gas chromatograph (GC) analysis. The result showed that the microbiota composition exhibited rich diversity. Twenty-five bacterial and 18 fungal genera were found in the whole fermentation process where Lactobacillus, Acetobacter, Aspergillus, Saccharomyces, and Alternaria were the predominant microorganisms. Alpha diversity metrics showed that bacterial diversity in Daqu was greater than that in AF and AAF. By contrast, fungal diversity increased from Daqu to AF and decreased in the initial stage (5–8 days) of AAF then remained relatively steady. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. The LZFV fermentation is a continuous process with spontaneous growth that affects the dynamics of microbial communities. Continuous changes of micro-environment conditions in substrate affect the diversity and structure of microbiota. Microbial growth and metabolism were closely related to the changes in the physicochemical characteristics of the cultures. The microbial flora composition showed rich diversity, and with the increase in brewing time and the change in micro-ecological environmental conditions; the microbial community showed a complex dynamic changes.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号