首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analyses of Conformational States of the Transporter Associated with Antigen Processing (TAP) Protein in a Native Cellular Membrane Environment
Authors:Jie Geng  Sivaraj Sivaramakrishnan  Malini Raghavan
Institution:From the Department of Microbiology and Immunology and ;§Departments of Cell and Developmental Biology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109
Abstract:The transporter associated with antigen processing (TAP) plays a critical role in the MHC class I antigen presentation pathway. TAP translocates cellular peptides across the endoplasmic reticulum membrane in an ATP hydrolysis-dependent manner. We used FRET spectroscopy in permeabilized cells to delineate different conformational states of TAP in a native subcellular membrane environment. For these studies, we tagged the TAP1 and TAP2 subunits with enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, respectively, C-terminally to their nucleotide binding domains (NBDs), and measured FRET efficiencies under different conditions. Our data indicate that both ATP and ADP enhance the FRET efficiencies but that neither induces a maximally closed NBD conformation. Additionally, peptide binding induces a large and significant increase in NBD proximity with a concentration dependence that is reflective of individual peptide affinities for TAP, revealing the underlying mechanism of peptide-stimulated ATPase activity of TAP. Maximal NBD closure is induced by the combination of peptide and non-hydrolysable ATP analogs. Thus, TAP1-TAP2 NBD dimers are not fully stabilized by nucleotides alone, and substrate binding plays a key role in inducing the transition state conformations of the NBD. Taken together, these findings show that at least three steps are involved in the transport of peptides across the endoplasmic reticulum membrane for antigen presentation, corresponding to three dynamically and structurally distinct conformational states of TAP. Our studies elucidate structural changes in the TAP NBD in response to nucleotides and substrate, providing new insights into the mechanism of ATP-binding cassette transporter function.
Keywords:ABC Transporter  Antigen Presentation  ATPases  Major Histocompatibility Complex (MHC)  Peptide Transport  Transporters  Transporter Associated with Antigen Processing (TAP)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号