首页 | 本学科首页   官方微博 | 高级检索  
     


Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate,the Northern Elephant Seal
Authors:Jessica U. Meir  Patrick W. Robinson  L. Ignacio Vilchis  Gerald L. Kooyman  Daniel P. Costa  Paul J. Ponganis
Affiliation:1. Dept. of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America.; 2. Dept. of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America.; 3. Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.; University of St Andrews, United Kingdom,
Abstract:Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most “natural” state.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号