首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Seasonal shifts in community composition and proteome expression in a sulphur-cycling cyanobacterial mat
Authors:Sharon L Grim  Dack G Stuart  Phoebe Aron  Naomi E Levin  Lauren Kinsman-Costello  Jacob R Waldbauer  Gregory J Dick
Institution:1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA;2. Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA

Contribution: Formal analysis (supporting), ?Investigation (supporting), Writing - review & editing (supporting);3. Department of Biological Sciences, Kent State University, Kent, Ohio, USA;4. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA;5. Department of Earth and Environmental Sciences, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA

Abstract:Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号