首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photosynthetic phosphoenolpyruvate carboxylases: characteristics of alloenzymes from leaves of c(3) and c(1) plants
Authors:Ting I P  Osmond C B
Institution:Department of Biology, University of California, Riverside, California 92502.
Abstract:A detailed comparison of green leaf phosphoenolpyruvate carboxylases from the C(4)-species Atriplex spongiosa and the C(3)-species Atriplex hastata revealed significant physical and kinetic differences. The two alloenzymes can be separated by anion exchange chromatography but have comparable molecular weights (350,000). Maximal velocity estimates were 38.0 and 1.48 micromoles per minute per milligram of chlorophyll for the carboxylases of A. spongiosa and A. hastata, respectively. Km phosphoenolpyruvate estimates were 0.49 and 0.08 mm for the C(4)A. spongiosa and C(3)A. hastata and the Km Mg estimates were 0.33 mm for the C(4) species and 0.017 mm for the C(3) species. The activity of the phosphoenolpyruvate carboxylase of A. spongiosa is more sensitive to chloride and phosphate than the phosphoenolpyruvate carboxylase of A. hastata, but both are equally sensitive to Mg chelating substances such as ATP, ADP, and citrate if assayed at their respective Km Mg values. A survey of the phosphoenolpyruvate carboxylases from 18 C(4) and C(3) species resulted in mean maximal velocity estimates of 29.0 +/- 13.2 and 1.50 +/- 0.57 micromoles per minute per milligram of chlorophyll for the C(4) species and C(3) species, respectively. Km phosphoenolpyruvate estimates were 0.59 +/- 0.35 mm and 0.14 +/- 0.07 mm for the C(4) and C(3), and Km Mg estimates were 0.50 +/- 0.30 and 0.097 +/- 0.057 mm for C(4) and C(3). All differences between means were significant at the 0.01 confidence level, supporting our hypothesis that the phosphoenolpyruvate carboxylase alloenzymes of C(4) and C(3) plants are functionally different and are associated with different photosynthetic roles. Both function in the photosynthetic production of C(4) acids, the phosphoenolpyruvate carboxylase of C(4) species largely producing malate or aspartate (or both) as a photosynthetic intermediate and the phosphoenolpyruvate carboxylase of C(3) species producing malate or aspartate (or both) as a photosynthetic product.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号