首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic contractile activity upregulates the proteasome system in rabbit skeletal muscle.
Authors:G A Ordway  P D Neufer  E R Chin  G N DeMartino
Affiliation:Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9040, USA. gordwa@mednet.swmed.edu
Abstract:Remodeling of skeletal muscle in response to altered patterns of contractile activity is achieved, in part, by the regulated degradation of cellular proteins. The ubiquitin-proteasome system is a dominant pathway for protein degradation in eukaryotic cells. To test the role of this pathway in contraction-induced remodeling of skeletal muscle, we used a well-established model of continuous motor nerve stimulation to activate tibialis anterior (TA) muscles of New Zealand White rabbits for periods up to 28 days. Western blot analysis revealed marked and coordinated increases in protein levels of the 20S proteasome and two of its regulatory proteins, PA700 and PA28. mRNA of a representative proteasome subunit also increased coordinately in contracting muscles. Chronic contractile activity of TA also increased total proteasome activity in extracts, as measured by the hydrolysis of a proteasome-specific peptide substrate, and the total capacity of the ubiquitin-proteasome pathway, as measured by the ATP-dependent hydrolysis of an exogenous protein substrate. These results support the potential role of the ubiquitin-proteasome pathway of protein degradation in the contraction-induced remodeling of skeletal muscle.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号