首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isoform- and subcellular fraction-specific differences in hippocampal 14-3-3 levels following experimentally evoked seizures and in human temporal lobe epilepsy
Authors:Schindler Clara K  Heverin Maura  Henshall David C
Institution:Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon, USA.
Abstract:14-3-3 proteins are a family of signaling molecules involved in diverse cellular functions, which can mediate anti-apoptotic effects. Seizure-induced neuronal death may involve programmed (apoptotic) cell death pathways and is associated with a decline in brain 14-3-3 levels. Presently, we investigated the subcellular localization and effects of seizures on isoforms of 14-3-3 in rat hippocampus, and contrasted these to findings in human temporal lobe epilepsy (TLE). All brain isoforms of 14-3-3 were detected in the cytoplasmic compartment of rat hippocampus, while 14-3-3gamma and -zeta were also present in mitochondrial and microsome-enriched fractions. Focally evoked seizures in rats significantly reduced 14-3-3gamma levels within the microsome-enriched compartment at 4 h, with similar responses for 14-3-3zeta, while cytoplasm-localized 14-3-3beta, -epsilon and -eta remained unchanged. Analysis of human autopsy control hippocampus revealed similar 14-3-3 isoform expression profiles. In TLE samples, the microsome-enriched fraction also showed differences, but here 14-3-3epsilon and -zeta levels were higher than controls. TLE sample 14-3-3 isoform abundance within the cytoplasmic fraction was not different to controls. This study defines the subcellular localization of 14-3-3 isoforms in rat and human hippocampus and identifies the microsome-enriched fraction as the main site of altered 14-3-3 levels in response to acute prolonged and chronic recurrent seizures.
Keywords:apoptosis  endoplasmic reticulum  epilepsy  neurodegeneration  programmed cell death
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号