首页 | 本学科首页   官方微博 | 高级检索  
     


The type-A response regulator,ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana
Authors:Kiba Takatoshi  Yamada Hisami  Sato Shusei  Kato Tomohiko  Tabata Satoshi  Yamashino Takafumi  Mizuno Takeshi
Affiliation:Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
Abstract:The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His-->Asp phosphorelay.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号