首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of vitamin A-deficiency and inflammation on the conducting airway epithelium of Syrian golden hamsters
Authors:E M McDowell  A M DeSanti  C Newkirk  J M Strum
Affiliation:Department of Pathology, University of Maryland School of Medicine, Baltimore 21201.
Abstract:The effects of vitamin A-deficiency and inflammation were studied in the conducting airways of Syrian golden hamsters. An important goal of the study was to characterize epithelial changes that occur early in vitamin A-deficiency, that might precede yet predispose to infection, and precipitate inflammatory changes in the lungs. Age-matched vitamin A-replete control and vitamin A-deprived hamsters were killed at 33 days of age (preweight-plateau); at 41 days of age (weight plateau-early weight loss); and at 48-55 days of age (prolonged weight plateau followed by weight loss). A tablet containing bromodeoxyuridine (BrdU) was implanted subcutaneously into each hamster 7 h before it was killed. No changes were seen in the conducting airway epithelium of vitamin A-deprived hamsters in the preweight plateau. However, labelling of secretory cells for BrdU was reduced 6-7 fold in the epithelium lining the lobar bronchus (p less than 0.0002) and the bronchioles (p less than 0.0001), and the proportions of ciliated cells were decreased (p less than 0.0001) at both airway levels in vitamin A-deficient hamsters in the weight plateau-early weight loss stage. Changes in cellular morphology were minimal in the intrapulmonary airway epithelium at this time but a few small focal patches of epidermoid metaplasia were seen in the tracheal epithelium. Small foci of inflammation were closely associated with the airways in the weight plateau, and the inflammation became more widespread when the deficiency was prolonged. The results suggest that the defense of the lungs to infection was impaired initially in the vitamin A-deficient hamsters by a widespread reduction in the numbers of ciliated cells throughout the epithelium of the conducting airways (trachea, bronchi, bronchioles). At the foci of inflammation, labelling of epithelial secretory cells for BrdU was greatly increased at all airway levels. A highly stratified cornifying epidermoid metaplasia developed in the tracheal epithelium, and goblet cell metaplasia developed in the cranial portion of the lobar bronchus, in association with submucosal inflammation. Goblet cell metaplasia appeared to be the only abnormality that was not reversed when vitamin A was restored to the diet.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号