首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Numerical model for the locomotion of spirilla
Authors:M Ramia
Institution:Department of Mechanical Engineering, The University of Sydney, NSW 2006, Australia
Abstract:The swimming of trailing, leading, and bipolar spirilla (with realistic flagellar centerline geometries) is considered. A boundary element method is used to predict the instantaneous swimming velocity, counter-rotation angular velocity, and power dissipation of a given organism as functions of time and the geometry of the organism. Based on such velocities, swimming trajectories have been deduced enabling a realistic definition of mean swimming speeds. The power dissipation normalized in terms of the square of the mean swimming speed is considered to be a measure of hydrodynamic efficiency. In addition, kinematic efficiency is defined as the extent of deviation of the swimming motion from that of a previously proposed ideal corkscrew mechanism. The dependence of these efficiencies on the organism's geometry is examined giving estimates of its optimum dimensions. It is concluded that appreciable correlation exists between the two alternative definitions for many of the geometrical parameters considered. Furthermore, the organism having the deduced optimum dimensions closely resembles the real organism as experimentally observed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号