首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recovery of functionally‐active protein from inclusion bodies using a thermal‐cycling method
Authors:Rahul Sadavarte  Carlos D M Filipe  Raja Ghosh
Institution:Dept. of Chemical Engineering, McMaster University, Hamilton, ON, Canada
Abstract:Heterologous overexpression of genes in Escherichia coli has made it possible to obtain high titers of recombinant proteins. However, this can result in the formation of aggregated protein particles known as ‘inclusion bodies’. Protein sequestered as inclusion body is inactive and needs to be converted back to its functional form by refolding using appropriate techniques. In the current study inclusion bodies of the enzyme aminoglycoside nucleotidyl transferase (or ANT(2″)‐Ia) were first solubilized in urea and subsequently subjected to thermal cycling under controlled conditions as part of the refolding strategy. Thermal cycling led to disaggregation of the individual protein chains and simultaneously refolding the released protein molecules to their native state. The optimum condition was identified as 10–80°C thermal cycling at 3°C s?1 for 2 h. Enzyme activity measurements showed that thermal cycling under optimized conditions resulted in 257% activity recovery when compared with nonrefolded protein. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:133–139, 2017
Keywords:inclusion body  thermal cycling  disaggregation  protein refolding  enzyme activity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号