首页 | 本学科首页   官方微博 | 高级检索  
     


Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study
Authors:R. Benz  F. Beckers  U. Zimmermann
Affiliation:(1) Fachbereich Biologie, Universität Konstanz, D-7750 Konstanz, Germany;(2) Institut für Biophysikalische Chemie, Kernforschungsanlage Jülich, D-5170 Jülich, Germany
Abstract:Summary Charge-pulse experiments were performed with lipid bilayer membranes from oxidized cholesterol/n-decane at relatively high voltages (several hundred mV). The membranes show an irreversible mechanical rupture if the membrane is charged to voltages on the order of 300 mV. In the case of the mechanical rupture, the voltage across the membrane needs about 50–200 mgrsec to decay completely to zero. At much higher voltages, applied to the membrane by charge pulses of about 500 nsec duration, a decrease of the specific resistance of the membranes by nine orders of magnitude is observed (from 108 to 0.1 OHgr cm2), which is correlated with the reversible electrical breakdown of the lipid bilayer membrane. Due to the high conductance increase (breakdown) of the bilayer it is not possible to charge the membrane to a larger value than the critical potential differenceVc. For 1m alkali ion chloridesVc was about 1 V. The temperature dependence of the electrical breakdown voltageVc is comparable to that being observed with cell membranes.Vc decreases between 2 and 48°C from 1.5 to 0.6 V in the presence of 1m KCl.Breakdown experiments were also performed with lipid bilayer membranes composed of other lipids. The fast decay of the voltage (current) in the 100-nsec range after application of a charge pulse was very similar in these experiments compared with experiments with membranes made from oxidized cholesterol. However, the membranes made from other lipids show a mechanical breakdown after the electrical breakdown, whereas with one single membrane from oxidized cholesterol more than twenty reproducible breakdown experiments could be repeated without a visible disturbance of the membrane stability.The reversible electrical breakdown of the membrane is discussed in terms of both compression of the membrane (electromechanical model) and ion movement through the membrane induced by high electric field strength (Born energy).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号