首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An immobilized enzyme reactor for the detoxification of bilirubin
Authors:Sung C  Lavin A  Klibanov A M  Langer R
Institution:Department of Chemical Engineering, MIT and Harvard-MIT Division of Health Sciences and Technology.
Abstract:An immobilized enzyme reactor has been developed for the degradation of bilirubin as a potential treatment for neonatal jaundice. It utilizes the enzyme bilirubin oxidase from Myrothecium verrucaria, which in the presence of molecular oxygen converts bilirubin to biliverdin and other products that are much less toxic than bilirubin. Bilirubin oxidase was covalently attached to agarose beads using cyano transfer activation. Forty percent of the specific activity of bilirubin oxidase was retained after immmobilization, and preparations with 20 units of enzymatic activity per gram of drained wet weight of gel were obtained. The stability of bilirubin oxidase at pH 7.4 and 37 degrees C was improved fivefold by immobilization. A 15-mL column containing immobilized bilirubin oxidase, through which a 37 degrees C solution of 332muM bilirubin and 450muM human serum albumin in 0.05M phosphate buffer (pH 7.4) was passed at 1 mL/min, converted more than 60 percent of the bilirubin per pass. The substrate specificity of the enzyme and the small volume of the reactor are important characteristics for this clinical application where it is desirable to remove only one compound from the blood and to minimize the volume of blood in the extracorporeal circuit. This reactor, by detoxifying the jaundiced infant's blood of bilirubin, would eliminate the risks associated with the use of donor blood as is done currently in treating severe neonatal jaundice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号