首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NO-cGMP Signaling and Regenerative Medicine Involving Stem Cells
Authors:K S Madhusoodanan  Ferid Murad
Institution:(1) The Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, 1825 Pressler street, Houston, TX 77030, USA;(2) Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
Abstract:Nitric oxide (NO) is a short lived diatomic free radical species synthesized by nitric oxide synthases (NOS). The physiological roles of NO depend on its local concentrations as well as availability and the nature of downstream target molecules. At low nanomolar concentrations, activation of soluble guanylyl cyclase (sGC) is the major event initiated by NO. The resulting elevation in the intracellular cyclic GMP (cGMP) levels serves as signals for regulating diverse cellular and physiological processes. The participation of NO and cGMP in diverse physiological processes is made possible through cell type specific spatio-temporal regulation of NO and cGMP synthesis and signal diversity downstream of cGMP achieved through specific target selection. Thus cyclic GMP directly regulates the activities of its downstream effectors such as Protein Kinase G (PKG), Cyclic Nucleotide Gated channels (CNG) and Cyclic nucleotide phosphodiesterases, which in turn regulate the activities of a number of proteins that are involved in regulating diverse cellular and physiological processes. Localization and activity of the NO-cGMP signaling pathway components are regulated by G-protein coupled receptors, receptor and non receptor tyrosine kinases, phosphatases and other signaling molecules. NO also serves as a powerful paracrine factor. At micromolar concentrations, NO reacts with superoxide anion to form reactive peroxinitrite, thereby leading to the oxidation of important cellular proteins. Extensive research efforts over the past two decades have shown that NO is an important modulator of axon outgrowth and guidance, synaptic plasticity, neural precursor proliferation as well as neuronal survival. Excessive NO production as that evoked by inflammatory signals has been identified as one of the major causative reasons for the pathogenesis of a number of neurodegenerative diseases such as ALS, Alzheimers and Parkinson diseases. Regenerative therapies involving transplantation of embryonic stem cells (ES cells) and ES cell derived lineage committed neural precursor cells have recently shown promising results in animal models of Parkinson disease (PD). Recent studies from our laboratory have shown that a functional NO-cGMP signaling system is operative early during the differentiation of embryonic stem cells. The cell type specific, spatio-temporally regulated NO-cGMP signaling pathways are well suited for inductive signals to use them for important cell fate decision making and lineage commitment processes. We believe that manipulating the NO-cGMP signaling system will be an important tool for large scale generation of lineage committed precursor cells to be used for regenerative therapies. Special issue dedicated to John P. Blass.
Keywords:Nitric oxide  Soluble guanylyl cyclase  Cyclic GMP  Signaling  Physiology  Neurodegenerative diseases  Stem cells  Regenerative medicine
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号