首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phloem transport in Picea abies (L.) Karst. in mid-winter
Authors:Sabine Blechschmidt-Schneider
Institution:(1) Forstbotanisches Institut der Universität, Büsgenweg 2, W-3400 Göttingen, Federal Republic of Germany
Abstract:Summary Translocation of 14C assimilates was studied on four different transport systems of Picea abies branches after induced activation in January. 14CO2 assimilation of terminal shoots for 48 h at 25° C resulted in phloem loading and basipetal transport of 14C photosynthate into the following, older shoot generations. 14C import was enhanced, when these older shoot generations were kept in the dark. Microautoradiographs of the labelled terminal shoots showed that 14C assimilates were exported from needles via sieve elements of the leaf traces and loaded into the latest increment of the axial secondary phloem. No 14C label appeared in the obliterated sieve cells or in the tracheids. In addition, 14C photosynthate accumulated densely in the chlorophyllous cells of the cortex and in cells of the resin ducts, indicating certain sink activity. In the darkened 2-year-old shoot, imported 14C photosynthate was concentrated in the functional secondary phloem, while some 14C label was unloaded into the latest xylem increment. When 6-year-old shoots were exposed to 14CO2 for 48 h in the light, 14C assimilates accumulated in the phloem of the leaf trace and in the latest increment of the axial secondary phloem. However, a substantial amount of radioactivity was unloaded into ray cells and phloem parenchyma cells. Thus, the presence of functioning phloem in needles and twigs of P. abies during winter allows long-distance translocation and radial distribution of assimilates according to existing source-sink relations.
Keywords:14C translocation  Microautoradiography  Phloem loading/unloading  Picea abies  Symplastic transport
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号