首页 | 本学科首页   官方微博 | 高级检索  
     


Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis
Authors:Ghezzi Daniele  Baruffini Enrico  Haack Tobias B  Invernizzi Federica  Melchionda Laura  Dallabona Cristina  Strom Tim M  Parini Rossella  Burlina Alberto B  Meitinger Thomas  Prokisch Holger  Ferrero Ileana  Zeviani Massimo
Affiliation:Unit of Molecular Neurogenetics, Fondazione IRCCS, Milan, Italy.
Abstract:Dysfunction of mitochondrial respiration is an increasingly recognized cause of isolated hypertrophic cardiomyopathy. To gain insight into the genetic origin of this condition, we used next-generation exome sequencing to identify mutations in MTO1, which encodes mitochondrial translation optimization 1. Two affected siblings carried a maternal c.1858dup (p.Arg620Lysfs8) frameshift and a paternal c.1282G>A (p.Ala428Thr) missense mutation. A third unrelated individual was homozygous for the latter change. In both humans and yeast, MTO1 increases the accuracy and efficiency of mtDNA translation by catalyzing the 5-carboxymethylaminomethylation of the wobble uridine base in three mitochondrial tRNAs (mt-tRNAs). Accordingly, mutant muscle and fibroblasts showed variably combined reduction in mtDNA-dependent respiratory chain activities. Reduced respiration in mutant cells was corrected by expressing a wild-type MTO1 cDNA. Conversely, defective respiration of a yeast mto1Δ strain failed to be corrected by an Mto1Pro622∗ variant, equivalent to human MTO1Arg620Lysfs∗8, whereas incomplete correction was achieved by an Mto1Ala431Thr variant, corresponding to human MTO1Ala428Thr. The respiratory yeast phenotype was dramatically worsened in stress conditions and in the presence of a paromomycin-resistant (PR) mitochondrial rRNA mutation. Lastly, in vivo mtDNA translation was impaired in the mutant yeast strains.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号