Hip joint contact force in the emu (Dromaius novaehollandiae) during normal level walking |
| |
Authors: | Goetz Jessica E Derrick Timothy R Pedersen Douglas R Robinson Duane A Conzemius Michael G Baer Thomas E Brown Thomas D |
| |
Affiliation: | Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA. |
| |
Abstract: | The emu is a large, (bipedal) flightless bird that potentially can be used to study various orthopaedic disorders in which load protection of the experimental limb is a limitation of quadrupedal models. An anatomy-based analysis of normal emu walking gait was undertaken to determine hip contact forces for comparison with human data. Kinematic and kinetic data captured for two laboratory-habituated emus were used to drive the model. Muscle attachment data were obtained by dissection, and bony geometries were obtained by CT scan. Inverse dynamics calculations at all major lower-limb joints were used in conjunction with optimization of muscle forces to determine hip contact forces. Like human walking gait, emu ground reaction forces showed a bimodal distribution over the course of the stance phase. Two-bird averaged maximum hip contact force was approximately 5.5 times body weight, directed nominally axially along the femur. This value is only modestly larger than optimization-based hip contact forces reported in literature for humans. The interspecies similarity in hip contact forces makes the emu a biomechanically attractive animal in which to model loading-dependent human orthopaedic hip disorders. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|