首页 | 本学科首页   官方微博 | 高级检索  
     


Climate‐driven habitat change causes evolution in Threespine Stickleback
Authors:Simone Des Roches  Michael A. Bell  Eric P. Palkovacs
Abstract:Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate‐driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar‐built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low‐plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate‐driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar‐built estuaries have transitioned from lotic (flowing‐water) to lentic (still‐water) habitats, where the low‐plated allele is favoured. The low‐plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate‐driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.
Keywords:adaptation  climate change     Gasterosteus aculeatus     intraspecific variation  latitudinal gradient  rapid evolution  resurvey  space‐for‐time
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号