首页 | 本学科首页   官方微博 | 高级检索  
     


Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest
Authors:Kris M. Hart  Giulio Curioni  Phillip Blaen  Nicholas J. Harper  Peter Miles  Keith F. Lewin  John Nagy  Edward J. Bannister  Xiaoming M. Cai  Rick M. Thomas  Stefan Krause  Michael Tausz  A. Robert MacKenzie
Abstract:In 2017, the Birmingham Institute of Forest Research (BIFoR) began to conduct Free Air Carbon Dioxide Enrichment (FACE) within a mature broadleaf deciduous forest situated in the United Kingdom. BIFoR FACE employs large‐scale infrastructure, in the form of lattice towers, forming ‘arrays’ which encircle a forest plot of ~30 m diameter. BIFoR FACE consists of three treatment arrays to elevate local CO2 concentrations (e[CO2]) by +150 µmol/mol. In practice, acceptable operational enrichment (ambient [CO2] + e[CO2]) is ±20% of the set point 1‐min average target. There are a further three arrays that replicate the infrastructure and deliver ambient air as paired controls for the treatment arrays. For the first growing season with e[CO2] (April to November 2017), [CO2] measurements in treatment and control arrays show that the target concentration was successfully delivered, that is: +147 ± 21 µmol/mol (mean ± SD) or 98 ± 14% of set point enrichment target. e[CO2] treatment was accomplished for 97.7% of the scheduled operation time, with the remaining time lost due to engineering faults (0.6% of the time), CO2 supply issues (0.6%) or adverse weather conditions (1.1%). CO2 demand in the facility was driven predominantly by wind speed and the formation of the deciduous canopy. Deviations greater than 10% from the ambient baseline CO2 occurred <1% of the time in control arrays. Incidences of cross‐contamination >80 µmol/mol (i.e. >53% of the treatment increment) into control arrays accounted for <0.1% of the enrichment period. The median [CO2] values in reconstructed three‐dimensional [CO2] fields show enrichment somewhat lower than the target but still well above ambient. The data presented here provide confidence in the facility setup and can be used to guide future next‐generation forest FACE facilities built into tall and complex forest stands.
Keywords:deciduous  elevated carbon dioxide  FACE  oak  performance     Quercus robur     United Kingdom  Woodland
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号