Affiliation: | aLaboratory of Cellular and Molecular Evolution, and Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China bLaboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China cThe Graduate School, Chinese Academy of Sciences, Beijing 100039, China |
Abstract: | Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25–50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. |