Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis |
| |
Authors: | A G Miller D H Turpin D T Canvin |
| |
Abstract: | We have found that Na+ is required for the alkalotolerance of the cyanobacterium Synechococcus leopoliensis. Cell division did not occur at any pH in the absence of Na+, but cells inoculated into Na+-free growth medium at pH 6.8 did continue metabolic activity, and over a period of 48 h, the cells became twice their normal size. Many of these cells remained viable for at least 59 h and formed colonies on Na+ -containing medium. Cells grown in the presence of Na+ and inoculated into Na+ -free growth medium at pH 9.6 rapidly lost viability. An Na+ concentration of ca. 0.5 milliequivalents X liter-1 was required for sustained growth above pH 9.0. The Na+ requirement could be only partially met by Li+ and not at all by K+ or Rb+. Cells incubated in darkness in growth medium at pH 6.8 had an intracellular pH near neutrality in the presence or absence of Na+. When the external pH was shifted to 9.6, only cells in the presence of Na+ were able to maintain an intracellular pH near 7.0. The membrane potential, however, remained high (-120 mV) in the absence or presence of Na+ unless collapsed by the addition of gramicidin. Thus, the inability to maintain a neutral intracellular pH at pH 9.6 in the absence of Na+ was not due to a generalized disruption of membrane integrity.Even cells containing Na+ still required added Na+ to restore photosynthetic rates to normal after the cells had been washed in Na+ -free buffer at pH 9.6. This requirement was only partially met by Li+ and was not met at all by K+, Rb+, Cs+ Mg2+, or Ca2+. The restoration of photosynthesis by added Na+ occurred within 30 s and suggests a role for extracellular Na+. Part of our results can be explained in terms of the operation of an Na+/H+ antiporter activity in the plasma membrane, but some results would seem to require other mechanisms for Na+ action. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|